Theoretical Study of OH and H₂O Addition to SO₂

Wai-Kee Li^{*,1a} and Michael L. McKee^{*,1b}

Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, and Department of Chemistry, Auburn University, Auburn, Alabama 36849

Received: July 23, 1997; In Final Form: October 10, 1997[®]

The G2 computational method is applied to the study of the hydroxyl radical oxidation of SO₂ to SO₃ as well as the hydrolysis of SO₂ to H₂SO₃. A key intermediate in the oxidation process is the HOSO₂ radical, which is predicted to have a S–OH bond enthalpy (ΔH_{298}) of 26.2 kcal/mol, 4.3 kcal/mol lower than the currently accepted value of 30.5 kcal/mol. The radical is characterized by a 2c-2e S–OH bond with an unpaired electron delocalized into the π^* orbital of the SO₂ moiety. The hydrolysis of SO₂ to H₂SO₃ was computed with and without a catalytic water. The SO₂·H₂O and SO₂·2H₂O complexes and transition states are very similar to those computed for SO₃ plus water. The uncatalyzed reaction has an activation barrier of 33.9 kcal/mol, which is reduced to 20.0 kcal/mol with one catalytic water. Since the reaction of SO₂ with two waters is nearly thermoneutral (4.5 kcal/mol endothermic), the reaction may be more amenable to thermodynamic study compared to the SO₃ + 2H₂O reaction, which is much more exothermic.

Introduction

The global anthropogenic emission of sulfur into the atmosphere, mainly in the form of SO₂, is about 10^{14} g/yr.² It is believed³⁻⁵ that SO₂ is converted into H₂SO₄ by the series of steps given below (eqs 1–3).

$$SO_2 + OH + M \rightarrow HOSO_2 + M$$
 (1)

$$HOSO_2 + O_2 \rightarrow SO_3 + O_2H \tag{2}$$

$$SO_3 + H_2O + M \rightarrow H_2SO_4 + M$$
(3)

The first reaction has been been studied by a variety of techniques.⁶⁻¹⁰ The optimized geometry and vibrational frequencies of HOSO₂ have also been reported at the HF/3-21G* level.¹¹ Experimentally, the existence of the HOSO₂ radical is on firm ground. It has been formed by neutralization/reion-ization mass spectrometry,¹² and vibrational frequencies have been measured in a low-temperature matrix.¹³ No theoretical calculations on the transition state of eq 1 have been reported.

An early estimate by Benson¹⁴ put the HO–SO₂ bond energy at 37 ± 2 kcal/mol. On the basis of more recent experiments, Gleason and Howard determined the upper limit of the bond enthalpy to be 33 kcal/mol.¹⁵ The most recent compilation of themochemical data gives a value of 30.5 kcal/mol.¹⁶

The formation of SO₃ from HOSO₂ (eq 2) has been studied in a low-pressure discharge flow reactor by directly measuring the loss of HOSO₂ using chemical ionization mass spectrometry.¹⁷ At the MP4/6-31G**//HF/3-21G* level plus thermal corrections, eq 2 is calculated to be endothermic by 12.3 kcal/ mol.¹¹ Since the reaction is known to proceed readily,¹⁷ this result is inconsistent with experiment.

The third reaction (eq 3) has received the most attention, both experimentally^{18–24} and theoretically.^{25–27} It was assumed that the gas-phase reaction involved the initial formation of a SO₃-water complex, which then formed H₂SO₄. In an early study of the reaction by theoretical methods, Chen and Plummer²⁵ calculated the binding energy of the SO₃·H₂O complex to be 21.4 kcal/mol. More recently, Hofmann and Schleyer²⁶ have carried out a careful study of the reaction with much larger basis

sets and high levels of electron correlation. They found the $SO_3 \cdot H_2O$ complex to be bound by 7.9 kcal/mol with a 27.4 kcal/mol barrier for conversion to H_2SO_4 (enthalpies at 298K with MP4/6-311+G(2df,p)//MP2/6-31+G(d) energies).

Back-to-back publications by Kolb et al.²⁴ and Morokuma and Muguruma²⁷ gave experimental and theoretical support to the conversion of SO₃ to H_2SO_4 with the catalytic effect of an additional water (eqs 4–7).

$$SO_3 + (H_2O)_2 \rightarrow H_2SO_4 \cdot H_2O$$
 (4)

$$SO_3 + (H_2O)_2 \rightarrow SO_3 \cdot H_2O + H_2O$$
 (5)

$$SO_3 \cdot H_2O + H_2O \rightarrow H_2SO_4 \cdot H_2O$$
 (6)

$$SO_3 \cdot 2H_2O \rightarrow H_2SO_4 \cdot H_2O$$
 (7)

The uncatalyzed reaction (eqs 8, 9) had a much higher activation

$$SO_3 + H_2O + M \rightarrow SO_3 \cdot H_2O$$
 (8)

$$SO_3 \cdot H_2O \rightarrow H_2SO_4$$
 (9)

barrier (32.2 kcal/mol) relative to eq 4 (0.7 kcal/mol), eq 6 (5.3 kcal/mol), or eq 7 (13 kcal/mol).

Kolb et al.,²⁴ using an atmospheric pressure turbulent flow reactor to measure first-order decays with chemical ionization mass spectrometry, determined the reaction rate to be second order in water vapor. They could not determine the relative contribution of eq 4 or eq 6. The activation barrier of eq 7 was considered to be too high for that reaction to participate in the mechanism.

Hofmann-Sievert and Castleman²⁸ and, more recently, Akhmatskaya et al.²⁹ have looked at water clusters $((H_2O)_n, n = 2-10 \text{ and } n = 200)$ reacting with SO₃ to form H₂SO₄. Their results show that SO₃ is readily converted to sulfuric acid by the water cluster. In addition, Akhmatskaya et al.²⁹ have carried out Monte Carlo simulations on [SO₃(H₂O)₂](H₂O)_n with n =10 and found that the 10 "extra" waters reduced the activation barrier for formation of H₂SO₄ by 10.0 kcal/mol.

The SO₃•H₂O complex has been identified by IR in an argon matrix³⁰ and, more recently, by microwave spectra of five isotopically substituted derivatives, which has allowed structural

[®] Abstract published in Advance ACS Abstracts, December 1, 1997.

TABLE 1: Energies, Enthalpies (298 K), and Free Energies (298 K) in hartrees at the G2 Level

	point				
	group	state	E_0	<i>H</i> (298 K)	G(298 K)
Н	К	^{2}S	$-0.500\ 00$	-0.497 64	-0.510 65
OH	$C_{\infty v}$	$^{2}\Sigma$	-75.643 91	-75.640 61	-75.66081
H_2O	C_{2v}	${}^{1}A_{1}$	-76.332 06	-76.328 28	-76.349 66
$(H_2O)_2$	C_s	$^{1}A'$	-152.669 10	-152.662 03	-152.695 50
O_2	$D_{\sim h}$	$^{3}\Sigma_{g}^{-}$	-150.14822	-150.144 91	-150.168 12
HO_2	$C_{\rm s}$	${}^{2}A'$	-150.727 92	-150.724 11	-150.75003
SO_2	C_{2v}	${}^{1}A_{1}$	-548.015 74	-548.011 73	-548.03978
SO_2	C_{2v}	${}^{3}B_{1}$	-547.898 56	-547.894 35	-547.923 94
SO_3	D_{3h}	${}^{1}A_{1}'$	-623.125 32	-623.120 86	-623.149 75
HOSO ₂	C_1	^{2}A	-623.699 28	-623.694 12	-623.726 49
HOSO ₂ (cis)	$C_{\rm s}$	$^{2}A'$	-623.693 86	-623.693 69	-623.725 42
$HOSO_2$ (trans)	$C_{\rm s}$	${}^{2}A'$	-623.689 15	-623.688 95	-623.72072
HOSO ₂ (cis)	$C_{\rm s}$	$^{2}A''$	-623.661 45	-623.656 28	-623.688 68
HOSO ₂ (trans)	$C_{\rm s}$	${}^{2}A''$	-623.656 84	-623.651 33	-623.684 54
HSO ₃	C_{3v}	${}^{2}A_{2}$	-623.644 84	-623.640 30	-623.670 69
HOOSO	C_1	^{2}A	-623.618 88	-623.612 95	-623.647 20
$TS(HOSO_2 \rightarrow HSO_3)$	$C_{\rm s}$	$^{2}A'$	-623.617 66	-623.612 89	-623.644 65
$TS(OH + SO_2)$	C_1	^{2}A	-623.662 79	-623.657 16	-623.690 85
SO ₂ •H ₂ O	$C_{ m s}$	${}^{1}A'$	-624.353 32	-624.345 60	-624.383 67
H_2SO_3	$C_{\rm s}$	$^{1}A'$	-624.338 55	-624.332 82	-624.366 25
$SO_2 \cdot 2H_2O$	C_1	^{1}A	-700.695 83	-700.685 44	-700.72948
$H_2SO_3 \cdot H_2O$	$C_{ m s}$	^{1}A	-700.685 22	-700.678 18	-700.71656
$TS-1H_2O$	C_1	^{1}A	-624.296 68	-624.291 50	-624.323 35
$TS-2H_2O$	C_1	^{1}A	-700.660 42	-700.653 39	-700.689 57

parameters to be determined.³¹ The S–O interaction is 2.432 Å, and the H–O–H plane makes a 103° angle with the S–O axis. While the orientation of the water with respect to SO₃ could not be determined by experiment, high-level theory²⁶ suggests an eclipsed geometry which would allow each hydrogen to interact with a different oxygen of SO₃.

Our goals in this study are 2-fold: to investigate the nature of the SO₂–OH complex and to consider the reaction of SO₂ with one and two water molecules to form sulfurous acid (eqs 10-15). While the hydrolysis reactions are not usually considered in atmospheric cycles, they may have relevance when the water vapor concentration is high and OH radical concentration low. Also, since the SO₂/H₂O reaction is less exothermic than the SO₃/H₂O reaction, the former reaction may be more amenable to study by equilibrium techniques.

$$SO_2 + H_2O + M \rightarrow SO_2 \cdot H_2O + M$$
 (10)

$$SO_2 \cdot H_2 O \rightarrow H_2 SO_3$$
 (11)

$$SO_2 + (H_2O)_2 \rightarrow H_2SO_3 \cdot H_2O$$
 (12)

$$SO_2 + (H_2O)_2 \rightarrow SO_2 \cdot H_2O + H_2O$$
 (13)

$$SO_2 \cdot H_2O + H_2O \rightarrow H_2SO_3 \cdot H_2O$$
 (14)

$$SO_2 \cdot 2H_2O \rightarrow H_2SO_3 \cdot H_2O$$
 (15)

Computational Method

All calculations were carried out with the Gaussian94 program package.³² G2 energies were computed in the standard way,³³ while enthalpy corrections and free energies at 1 atm and 298K were computed using HF/6-31G(d) frequencies in the harmonic approximation without scaling. Energies, enthalpies, and free energies at the G2 level are given in Table 1, while relative energies (kcal/mol) on the HSO₃ potential energy surface are presented in Table 2 and on the SO₂·H₂O and SO₂·2H₂O surfaces in Table 3. Figures of molecular structures on the HSO₃ potential energy surface at the MP2(FULL)/6-31G(d)

 TABLE 2: Relative Energies, Enthalpies, and Free Energies

 (kcal/mol) at the G2 Level on the HOSO₂ Potential Energy

 Surface

	ΔE	ΔH (298 K)	ΔG (298 K)
$SO_2 + OH$	0.0	0.0	0.0
$SO_3 + H$	21.5	21.2	25.2
HOSO ₂	-24.9	-26.2	-16.2
$HOSO_2$ (² A' cis)	-21.5	-25.9	-15.6
$HOSO_2$ (² A' trans)	-18.5	-23.0	-12.6
$HOSO_2$ (² A'' cis)	-1.1	-2.5	7.5
HOSO ₂ (² A" trans)	1.8	0.6	10.1
HSO ₃	9.3	7.6	18.8
HOOSO	25.6	24.7	33.5
TS(HOSO ₂ →HSO ₃)	26.3	24.8	35.1
$TS(OH + SO_2)$	-2.0	-3.0	6.1
$HOSO_2 + O_2 (^{3}\Sigma_g^{-})$	0.0	0.0	0.0
$SO_3 + O_2H$	-3.6	-3.7	-3.2

TABLE 3: Relative Energies, Enthalpies, and Free Energies (kcal/mol) at the G2 Level for the Reactions $SO_2 + n(H_2O)$, n = 1, 2

	ΔE	ΔH (298 K)	ΔG (298 K)
$SO_2 + H_2O$	0.0	0.0	0.0
$SO_2 \cdot H_2O$	-3.5	-3.5	3.6
TS-1H ₂ O	32.1	30.4	41.5
H_2SO_3	5.8	4.5	14.6
$SO_2 + 2H_2O$	0.0	0.0	0.0
$SO_2 + (H_2O)_2$	-3.1	-3.4	2.4
$SO_2 \cdot H_2O + H_2O$	-3.5	-3.5	3.6
$SO_2 \cdot 2H_2O$	-10.0	-10.7	6.0
$TS-1H_2O + H_2O$	32.1	30.4	41.5
TS-2H ₂ O	12.2	9.3	31.1
$H_2SO_3 \cdot H_2O$	-3.4	-6.2	14.1
$H_2SO_3 + H_2O$	5.8	4.5	14.6

level are given in Figure 1 and on the $SO_2 \cdot H_2O$ and $SO_2 \cdot 2H_2O$ potential energy surfaces in Figure 2.

Results and Discussion

HOSO₂. The nature of the interaction between a radical and a neutral species containing a lone pair is influenced by the energy for rehybridization and the strength of the 2c-2e (twocenter two-electron) bond between the radical and neutral species.³⁴ When the rehybridization energy is high (i.e. no lowlying empty orbitals), a 2c-3e bond may be formed. This is

Figure 1. Molecular plots of species relevant to the addition of OH to SO₂. Selected geometric parameters are at the MP2(FULL)/6-31G-(d) level.

Figure 2. Molecular plots of species relevant to the addition of one (top row) and two waters (bottom row) to SO_2 . Selected geometric parameters are at the MP2(FULL)/6-31G(d) level.

the case for HOS(CH₃)₂³⁵ and HOS(H)CH₃,³⁶ where the O–S distance is 1.9–2.0 Å and the unpaired spin density is evenly shared between sulfur and oxygen. In SO₂, the presence of an empty π^* orbital allows the facile rehybridization around the sulfur resulting in a ²A' state with a 2c-2e S–O bond and unpaired spin density delocalized in the π^* orbital. In the lowest-energy gauche conformation, the OH radical is bound by 26.2 kcal/mol. There are small rotation activation barriers of 0.3 and 3.2 kcal/mol for rotating over the cis and trans transition states, respectively. The 26.2 kcal/mol bond enthalpy is somewhat smaller than the latest experimental estimate¹⁶ of 30.5 kcal/mol.

Alternatively, an electron from the sulfur lone pair can be promoted into a σ^* orbital, which would lead to the formation of a ²A" state for HOSO₂. As expected (since the σ^* orbitals is higher in energy than the π^* orbital), the ²A" state is higher than the ²A' state; by 23.4 kcal/mol in the cis orientation and 23.6 kcal/mol in the trans orientation (Table 2).

TABLE 4: Estimated and Calculated $X-SO_2$, X = H, F, Cl, OH, Bond Enthalpies (kcal/mol)

X-SO ₂	singlet-triplet splitting ^a	standard 2c-2e bond enthalpy (BE) ^b	predicted $X-SO_2$ BE ^d	calculated X-SO ₂ BE
Н	73.5	81-87	10.5	15.0 ^e
F	73.5	68–118, 90.8 ^c	17.3	28.7^{f}
Cl	73.5	60-61	-13.0	-7.7^{f}
OH	73.5			26.2^{g}

^{*a*} Singlet-triplet splitting in SO₂ calculated from enthalpy differences in Table 1. ^{*b*} Standard bond enthalpies (kcal/mol) from: Shriver, D.; Atkins, P. W.; Langford, C. H. *Inorganic Chemistry*; Freeman: New York, 1990; p 69; Huheey, J. E. *Inorganic Chemistry*; 3rd ed.; Harper & Row: Cambridge, 1983; p A-32. ^{*c*} Standard 2c-2e S-F bond enthalpy taken from SF₂ \rightarrow SF + F. See ref 38. ^{*d*} The difference between the singlet-triplet splitting in SO₂ and the standard 2c-2e bond enthalpy is the estimate of the X-SO₂ bond enthalpy (kcal/mol). ^{*e*} G2 bond enthalpy (ΔH_{298}) taken from: Laakso, D.; Smith, C. E.; Goumri, A.; Rocha, J.-D. R.; Marshall, P. *Chem. Phys. Lett.* **1994**, 227, 377. ^{*f*} Bond energy at QCISD/6-31G(d)+ZPC taken from: Li, Z. *Chem. Phys. Lett.* **1997**, 269, 128. ^{*g*} This work.

An estimate of the X–SO₂ bond enthalpy can be made by subtracting the singlet–triplet splitting in SO₂ (${}^{1}A_{1}$ – ${}^{3}B_{1}$, 73.5 kcal/mol), which is an estimate of the required promotion energy, from the standard 2c-2e S–X bond enthalpy.³⁴ Estimated and calculated bond enthalpies for X–SO₂, X = H, F, Cl are presented in Table 4. The standard 2c-2e bond enthalpy of S–H (81–87 kcal/mol) and S–Cl (60–61 kcal/mol) do not vary significantly between different sources. In contrast, the standard 2c-2e S–F bond enthalpy varies from 68 to 118 kcal/ mol.³⁷ In a recent study of the thermochemistry of SF_n, n =1–6, Cheung et al.³⁸ reported experimental bond energies from 43.4 kcal/mol (SF₄–F) to 101.0 kcal/mol (SF₅–F). We choose the reaction enthalpy of SF₂ → SF + F as our standard 2c-2e S–F bond (90.8 kcal/mol) in Table 4.

The results in Table 4 indicate that the positive bond enthalpy of X-SO₂, X = H and F, and the negative bond enthalpy of X = Cl are a consequence of the intrinsic 2c-2e S-X bond enthalpies. Thus, the smaller 2c-2e S-Cl bond enthalpy does not compensate for the energy required to rehybridize around sulfur resulting in an unstable complex. Using the results of Table 4, an estimate of about 95 kcal/mol can be made for the standard 2c-2e S-O bond (73.5 + 26.2 - 5).

Since electronic reorganization is required prior to bond formation, an activation barrier is expected in the addition of OH to SO_2 . The transition state is characterized by a long S-OH distance of 2.131 Å (Figure 1). The O-S-O angle in the transition state has opened up 0.5° , and the S–O average bond length has decreased 0.01 Å compared to free SO₂. While the energy of the transition state is 5.6 kcal/mol above reactants at the MP2(FULL)/6-21G(d) level, at the G2 level, the enthalpy of the transition state (ΔH_{298}) is 3.0 kcal/mol below reactants (Table 2). Thus, it appears that the maximum along the reaction path must occur at a different location on the G2 surface. We are currently exploring the possiblity that formation of a 2c-3e bonded complex precedes the formation of the HOSO₂ radical. In that event, the 2c-3e complex may form without activation (no electronic reorganization required) followed by an activation barrier to HOSO₂.

We also investigated the rearrangement of HOSO₂ to HSO₃. Several reports have appeared on the relative stability of the bisulfite ion (HOSO₂⁻) and sulfonate ion (HSO₃⁻) in the gas phase^{39,40} as well as in the aqueous phase.⁴⁰ The preferred gasphase structure is highly dependent on the level of theory with the sulfonate ion predicted to be 3.2 kcal/mol more stable at the G2 level and the bisulfite ion 3.7 kcal/mol more stable at

Figure 3. Enthalpy (298 K) profile for the reaction of one and two waters with SO₂. Scale on the left is in units of kcal/mol.

the BD(T)/6-31G(d,p)//MP2/6-31G(d,p) level.⁴⁰ The present G2 results predict the HSO3 radical to be 33.8 kcal/mol less stable than HOSO₂ but bound by 13.6 kcal/mol relative to $H + SO_3$. The HSO₃ radical should have kinetic stability since rearrangement to the more stable HOSO₂ has a barrier of 17.2 kcal/mol (Table 2).

HOOSO. The formation of a O-O 2c-2e bond between OH and SO_2 is predicted to be much less favorable. In fact, the HOOSO radical is predicted to be 24.7 kcal/mol higher in energy than OH plus SO₂ (Table 2). Presumably, the electronic promotion energy necessary to reach the appropriate biradical configuration of SO₂ is not compensated for by the formation of a 2c-2e O-O bond with the hydroxyl radical.

 $HOSO_2 + O_2 \rightarrow SO_3 + O_2H$. Using an early estimate for the heat of formation of HOSO₂ by Benson¹⁴ (-98 ± 2 kcal/ mol), eq 2 is predicted to be endothermic by 6 kcal/mol. Since the reaction is known¹⁵ to have a small activation barrier (0.7 kcal/mol), the estimated heat of formation of HOSO2 is clearly too low. The latest compilation¹⁶ gives -92.0 kcal/mol, which reduces the endothermicity of the reaction to 0.9 kcal/mol. In comparison, the enthalpy of reaction at the G2 level is -3.7kcal/mol (Table 2), which implies a heat of formation for HOSO₂ of -87.4 kcal/mol.

 $SO_2 + n(H_2O)$, n = 1. The initial complex between SO_2 and H₂O (Figure 2) is much looser and weaker than the $SO_3 \cdot H_2O$ complex^{30,31} which can be attributed to the fact that SO₂ is a poorer Lewis acid compared to SO₃.⁴¹ The S-O distance in SO₂•H₂O is 2.818 Å (MP2/6-31G(d)) compared to 2.453 in SO₃·H₂O (MP2/6-31+G(d)),²⁶ and the binding energy is 3.5 kcal/mol in SO₂·H₂O (ΔH_{298} G2) compared to 7.9 in $SO_3 \cdot H_2O (\Delta H_{298} MP4/6-311+G(2df,p)//MP2/6-31+G(d)).^{26}$ However, the interaction in SO₂·H₂O is not dominated by hydrogen bonding as evidenced by the sandwich orientation of the SO₂ and H₂O molecular planes (Figure 2). In addition, the two OH bonds of H₂O are eclipsing the S-O bonds of SO₂ to maximize dipole interactions as well as intracomplex H-bonding.

The transition state for addition of H₂O to SO₂ to form H₂- SO_3 is very similar to the analogous reaction, $SO_3 + H_2O - H_2O$ H_2SO_4 .^{26,27} The most significant difference is in the length of the forming S-OH bond (Figure 2) which is about 0.1 Å longer in the transition state to form H_2SO_3 (1.984 versus 1.896 Å²⁶). The activation barrier for formation of H₂SO₃ (Figure 3, ΔH_{298} G2, 33.9 kcal/mol) is 8.1 kcal/mol higher than the activation barrier for formation of H₂SO₄ (ΔH_{298} 25.8 kcal/mol; MP4/6- $311+G(2df,p)//MP2/6-31+G(d)).^{26}$

6-31+G(d) + ZPC)).²⁷ In the SO₂ plus water reaction (Figure 3), one catalytic water reduces the activation barrier by 21.1 kcal/mol (33.9 - 12.8; eq 11-eq 14), while in the SO₃ plus water reaction, one catalytic water reduces the activation barrier by 26.9 kcal/mol (32.2 - 5.3; eq 9-eq 6).²⁷ Thus, while the second water is catalytic for formation of both H₂SO₃ and H₂-SO₄, it appears that the effect in the latter reaction is more pronounced.

7.2 kcal/mol) because the second water can simultaneously form

two hydrogen bonds (Figure 2). The activation barrier for eq

14 is 12.8 kcal/mol (ΔH_{298} G2), which is 1.3 kcal/mol higher than for eq 6 (11.5 kcal/mol; ΔH_0 MP4/6-311G(2df,p)//MP2/

J. Phys. Chem. A, Vol. 101, No. 50, 1997 9781

At 298K, SO₂ plus two water molecules has the lowest calculated free energies (Table 3). Relative to $SO_2 + 2H_2O_2$, the free energy of activation to form H_2SO_3 is 41.5 kcal/mol with one water and 31.1 kcal/mol with two waters. Despite an unfavorable entropy contribution of the second water molecule, the free energy of activation is reduced 10.4 kcal/mol. For comparison, Hofmann and Schleyer²⁶ have reported the free energy of activation to form H₂SO₄ with one water is 28.6 kcal/ mol.

Conclusions

The addition of a OH radical to SO₂ takes place with little or no activation barrier to form the HOSO₂ radical. The electronic activation in the transition state is associated with the promotion of an electron from the lone pair on sulfur to the empty π^* orbital (n \rightarrow p*), which occurs concurrently with formation of a 2c-2e bond to the hydroxyl radical. The HO-SO₂ bond enthalpy is calculated to be 26.2 kcal/mol, about 4 kcal/mol lower than the currently accepted value of 30.5 kcal/ mol,¹⁶ and the reaction HOSO₂ + $O_2 \rightarrow SO_3 + O_2H$ is predicted to be 3.7 kcal/mol exothermic.

In the hydrolysis reaction of SO₂ with one and two waters, the first water molecule binds to SO₂ with a binding enthalpy of 3.5 kcal/mol, while the second water has a much stronger binding enthalpy (7.3 kcal/mol) due to its ability to form two hydrogen bonds. The activation barrier for formation of H₂- $SO_3 \cdot H_2O$ from $SO_2 \cdot H_2O + H_2O$ (eq 14) is predicted to be reduced by 21.1 kcal/mol compared to the formation of H₂SO₃ from SO₂•H₂O (eq 11). In general, the SO₂/water complexes and transition states are very analogous to the corresponding structures on the SO₃/water potential energy surface.

Acknowledgment. W.K.L. acknowledges the support of a Direct Grant (No. 220600880) from the Chinese University of Hong Kong. Computer time was also provided by the Alabama Supercomputer Network.

References and Notes

4143.

(1) (a) Department of Chemistry, The Chinese University of Hong (a) Department of Chemistry, Auburn University.
(2) Berresheim, H.; Wine, P. H.; Davis, D. D. In *Composition*,

Chemistry, and Climate of the Atmosphere; Singh, H. B., Ed.; Van Nostrand Reinhold: Washington, DC, 1994.

(3) Calvert, J. G.; Stockwell, W. R. In SO2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations; Calvert, J. G., Ed.; Acid Precipitation Series; 3; Teasley, J. I., Series Ed.; Butterworth Publishers: Boston, MA, 1984.

(4) Anderson, L. G.; Gates, P. M.; Nold, C. R. In Biogenic Sulfur in the Environment; Saltzman, E. S., Cooper, W. J., Eds.; American Chemical Society: Washington, DC, 1989.

(5) Calvert, J. G.; Lazrus, A.; Kok, G. L.; Heikes, B. G.; Walega, J. G.; Lind, J.; Cantrell, C. A. Nature 1985, 317, 27.

(6) Wine, P. H.; Thompson, R. J.; Ravishankara, A. R.; Semmes, D. H.; Gump, Torabi, A.; Nicovich, J. M. J. Phys. Chem. 1984, 88, 2095. (7) Margitan, J. J. J. Phys. Chem. 1984, 88, 3314.

(8) Martin, D.; Jourdain, J. L.; Bras, G. L. J. Phys. Chem. 1986, 90,

 $SO_2 + n(H_2O)$, n = 2. The second water molecule has a larger binding enthalpy to SO₂ than the first (Figure 3, 3.5 versus

- (9) Greenblatt, G. D.; Howard, C. J. J. Phys. Chem. 1989, 93, 1035.
- (10) Lee, Y.-Y.; Kao, W.-C.; Lee, Y.-P. J. Phys. Chem. 1990, 94, 4535.
- (11) Nagase, S.; Hashimoto, S.; Akimoto, H. J. Phys. Chem. 1988, 92,
- 641.
- (12) Egsgaard, H.; Carlsen, L.; Florencio, H.; Drewello, T.; Schwarz, H. Chem. Phys. Lett. **1988**, 148, 537.
- (13) Hashimoto, S.; Inoue, G.; Akimoto, H. Chem. Phys. Lett. 1984, 107, 198.
 - (14) Benson, S. W. Chem. Rev. (Washington, D.C.) 1978, 78, 23.
 - (15) Gleason, J. F.; Howard, C. J. J. Phys. Chem. 1988, 92, 3414.
 - (16) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J.
- A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data 1997, 26, 521.
 (17) Gleason, J. F.; Sinha, A.; Howard, C. J. J. Phys. Chem. 1987, 91,
- 719.
 (18) Wang, X.; Jin, Y. G.; Suto, M.; Lee, L. C.; O'Neal, H. E. J. Chem.
 Phys. 1988, 89, 4853.
- (19) Polevoi, P. S.; Khachaturov-Tavrizian, A. E.; Ivanov, I. N. Radiat. Phys. Chem. 1990, 36, 99.
- (20) Reiner, T.; Arnold, F. J. Chem. Phys. 1994, 101, 7399.
- (21) Lovejoy, E. R.; Hanson, D. R.; Huey, L. G. J. Phys. Chem. 1996, 100, 19911.
- (22) Brown, R. C.; Anderson, M. R.; Miake-Lye, R. C.; Kolb, C. E. Sorokin, A. A.; Buriko, Y. Y. *Geophys. Res. Lett.* **1996**, *23*, 3603.
- (23) (24) Kolb, C. E.; Jayne, J. T.; Worsnop, D. R.; Molina, M. J.; Meads,
- R. F.; Viggiano, A. A. J. Am. Chem. Soc. 1994, 116, 10314.
 (25) Chen, T. S.; Plummer, P. L. M. J. Phys. Chem. 1985, 89, 3689.
- (26) Hofmann, M.; Schleyer, P. v. R. J. Am. Chem. Soc. 1994, 116, 4947.
- (27) Morokuma, K.; Muguruma, C. J. Am. Chem. Soc. 1994, 116, 10316.
 (28) Hofmann-Sievert, R.; Castleman, A. W. J. Phys. Chem. 1984, 88, 3329.
- (29) Akhmatskaya, E. V.; Apps, C. J.; Hillier, I. H.; Masters, A. J.; Watt, N. E.; Whitehead, J. C. *Chem. Commun.* **1997**, 707.

(31) (a) Phillips, J. A.; Canagaratna, M.; Goodfriend, H.; Leopold, K. R. J. Phys. Chem. **1995**, *99*, 501. (b) Leopold, K. R.; Canagaratna, M.; Phillips, J. A. Acc. Chem. Res. **1997**, *30*, 57.

(32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian94* (Rev. B.1); Gaussian, Inc.: Pittsburgh, PA, 1995.

(33) (a) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221. (b) Curtiss, L. A.; Raghavachari, K. Trucks, G. W. In Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy; Langhoff, S. R., Ed.; Kluwer: Dordrecht, The Netherlands, 1995. (c) Raghavachari, K; Curtiss, L. A. In Modern Electronic Structure Theory; Yarkony, D. R., Ed.; World Scientific: Singapore, 1995.

- (34) McKee, M. L.; Nicolaides, A.; Radom, L. J. Am. Chem. Soc. **1996**, 118, 10571.
- (35) McKee, M. L. J. Phys. Chem. 1993, 97, 10971.
- (36) Wilson, C.; Hirst, D. M. J. Chem. Soc., Faraday Trans. 1995, 91, 3783.
 - (37) See Table 4.
- (38) Cheung, Y.-S.; Chen, Y.-J.; Ng, C. Y.; Chiu, S.-W.; Li, W.-K. J. Am. Chem. Soc. 1995, 117, 9725.
 - (39) Brown, R. E.; Barber, F. J. Phys. Chem. 1995, 99, 8071.
- (40) Vincent, M. A.; Palmer, I. J.; Hillier, I. H. THEOCHEM 1997, 394, 1.
- (41) Purcell, K. F.; Kotz, J. C. Inorganic Chemistry; Saunders Co.: Philadelphia, PA, 1977; p 345.